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ABSTRACT
We study an iterative beam search algorithm for the permutation flowshop (makespan and flow-
time minimization). This algorithm combines branching strategies inspired by recent branch-
and-bounds and a guidance strategy inspired by the LR heuristic. It obtains competitive results
on large instances compared to the state-of-the-art algorithms, reports many new-best-so-far so-
lutions on the VFR benchmark (makespan minimization) and the Taillard benchmark (flowtime
minimization) without using any NEH-based branching or iterative-greedy strategy.
The source code is available at: https://github.com/librallu/dogs-pfsp.

1. Introduction
In the flowshop problem, one has to schedule jobs, where each job has to follow the same route of machines. The

goal is to find a job order that minimizes some criteria. The Permutation FlowShop Problem (PFSP) is a common
(and fundamental) variant that imposes the machines to process jobs in the same order (thus, a permutation of jobs is
enough to describe a solution). The permutation flowshop has been one of the most studied problems in the literature
[35, 31] and has been considered on various industrial applications [16, 42]. We may also note that the permutation
flowshop is at the origin of multiple other variants, for instance, the blocking permutation flowshop [45], the multiob-
jective permutation flowshop [20], the distributed permutation flowshop [11], the no-idle permutation flowshop [32],
the permutation flowshop with buffers [28] and many others. Regarding the criteria to minimize, in this paper, we
study two of the most studied objectives: the makespan (minimizing the completion time of the last job on the last
machine) and the flowtime (minimizing the sum of completion times of each job on the last machine). According to the
scheduling notation introduced by Graham, Lawler, Lenstra, and Rinnooy Kan [13], the makespan criterion is denoted
Fm|prmu|Cmax and the flowtime criterion Fm|prmu|∑Ci.
Consider the following example instance with m = 3machines with n = 4 jobs (j1, j2, j3, j4) with the job processingtime matrix P defined as follows where Pj,m indicates the processing time of job j on machine m:

P =
⎛

⎜

⎜

⎝

3 2 1 3
3 4 3 1
2 1 3 2

⎞

⎟

⎟

⎠

One possible solution can be described in Figure 1. This solution has a makespan (completion time of the last job
on the last machine) of 18 and a flowtime (sum of completion times on the last machine) of 8 + 11 + 16 + 18 = 53.
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Figure 1: A solution for the example instance with a job order � = j1, j2, j3, j4
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Regarding resolutionmethods, themakespanminimization permutation flowshop problem has beenmassively studied
over the last 50 years and a large number of numerical methods have been applied.

In 1983, Nawaz, Enscore, Ham proposed an insertion-based heuristic (later called NEH) [27]. This heuristic sorts
jobs by some criterion (usually by a non-decreasing sum of processing times), then, it adds them one by one at the
position that minimizes the objective function. The NEH, obtained, at the time, excellent results compared to other
heuristics and can be used to perform greedy algorithms and perturbation-based algorithms as well. It has been largely
considered as an essential component producing excellent solutions for large-scale permutation flowshop instances,
and multiple methods have been built using it. One of the most famous ones is Taillard’s acceleration [39]. It reduces
the cost of inserting a job at all possible positions from O(n2.k) to O(n.k). Considering these results, multiple works
aim to improve the NEH heuristic [10, 26, 14, 4, 36, 44, 25] to quote a few.

The (meta-)heuristics state-of-the-art methods for the makespan minimization usually perform an iterated-greedy
algorithm [38, 8]. Such algorithms start with a NEH heuristic to build an initial solution. Then, destroy a part of it and
reconstruct it using again a NEH heuristic. To the best of our knowledge, the current state-of-the-art algorithms for
the makespan minimization criterion are: the variable block insertion heuristic [15], the best-of-breed Iterated-Greedy
[8], and, an automatically designed algorithm using the EMILI framework [29]. We may note that other algorithms
exist to solve the makespan minimization. To quote a few, we can find some hybrid algorithms [46] (a combination
of the NEH heuristic as a part of the initial population, a genetic algorithm, and simulated annealing to replace the
mutation), memetic algorithms [17], an automatically designed local-search scheme [29].

The (meta-)heuristics methods for the flowtime minimization also involve the NEH heuristic, but some other con-
structivemethods as well. For instance, the Liu and Reeve’s method (LR) [24] performs a forward search (i.e appending
jobs at the end of the partial schedule). It was later improved to reduce its complexity from O(n3m) to O(n2m), later
called the FF algorithm [6]. Later, this scheme was integrated into a beam search algorithm (more on that later) that ob-
tained state-of-the-art performance [7]. Recently, this beam search was integrated within a biased random-key genetic
algorithm as a warm-start procedure [1]. In parallel, the authors of the EMILI framework also proposed an efficient
algorithm for the flowtime minimization. These are, to the best of our knowledge, the state-of-the-art methods for the
flowtime minimization alongside the algorithms proposed in [30].
Regarding exact-methods, a recent branch-and-bound [12] brought light on a bi-directional branching (i.e construct-

ing the candidate solution from the beginning and the end at the same time) combined with a simple yet efficient
bounding scheme to solve the makespan minimization criterion. The resulting branch-and-bound obtained excellent
performance and was even able to solve to optimality almost all large VFR instances with 20 machines.

Moreover, recently, an iterative beam search has been proposed and, successfully applied to various combinatorial
optimization problems as guillotine 2D packing problems [22, 9], the sequential ordering problem [21] and the longest
common subsequence problem [23]. This iterative beam search scheme, at the beginning of the search, behaves as a
greedy algorithm and then, more and more as a branch-and-bound algorithm as time goes (it performs a series of beam
search iterations with a geometric growth). It naturally combines search-space reductions from branch-and-bounds and
guidance strategies from classical (meta-)heuristics. Considering the success of recent branch-and-bound branching
schemes and the performance of greedy-like algorithms to solve the permutation flowshop, it would be a natural idea to
combine them. However, to the best of our knowledge, it has not been studied before. This paper aims to fill this gap.
For the makespan criterion, we implemented a bi-directional branching scheme and combined it with a variant of the
LR [24] guidance strategy and use an iterative beam-search algorithm to perform the search. We report competitive
results compared to the state-of-the-art algorithms and find new best-known solutions on many large VFR instances
(we improve the best-known solution for almost all instances with 500 jobs or more and 40 machines or more). Note
that these results are interesting and new as almost all the efficient algorithms in the literature are based on the NEH
heuristic or the iterated greedy algorithm. This is not the case for our algorithm as it is based on a variant of the LR
heuristic and an exact-method branching scheme (bi-directional branching).

Regarding the flowtime criterion, the bi-directional branching cannot be directly applied (the bounding procedure
is less efficient than for the makespan criterion). However, we show that an iterative beam search with a simple forward
search (modified LR algorithm) is efficient, outperforms the current state-of-the-art algorithms, and, reports new best-
solutions for the Taillard’s benchmark (almost all solutions for instances with 100 jobs or more were improved).

This paper is structured as follows: Section 2 presents the iterative beam search strategy. Section 3 presents the
branching schemes we implement (the forward and bi-directional search). Section 4 present the guides we implement
(the bound guide, the idle-time guide, and mixes between these two first guides) and Section 5 presents the results
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obtained by running all variants described in this paper, showing that an iterative beam search combined with a simple
variant of the LR heuristic can outperform the state-of-the-art.

2. The search strategy: Iterative beam search
Beam Search is a tree search algorithm that uses a parameter called the beam size (D). Beam Search behaves like

a truncated Breadth First Search (BrFS). It only considers the best D nodes on a given level. The other nodes are
discarded. Usually, we use the bound of a node to choose the most promising nodes. It generalizes both a greedy
algorithm (if D = 1) and a BrFS (if D = ∞). Figure 2 presents an example of beam search execution with a beam
width D = 3.
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Figure 2: Beam Search Iterations with a beam width D = 3

Beam Search was originally proposed in [34] and used in speech recognition. It is an incomplete (i.e. performing a
partial tree exploration and can miss optimal solutions) tree search parametrized by the beam width D. Thus, it is not
an anytime algorithm. The parameter D allows controlling the quality of the solutions and the execution time. The
larger D is, the longer it will take to reach feasible solutions, and the better these solutions will be.
Recently, a variant of beam search, called iterative beam search, was proposed and obtained state-of-the-art results on

various combinatorial optimization problems [21, 22, 23, 9]. Iterative beam search performs a series of restarting beam
search with geometrically increasing beam size until the time limit is reached. Algorithm 2.1 shows the pseudo-code
of an iterative beam search. The algorithm runs multiple beam-searches starting with D = 1 (line 1) and increases
the beam size (line 8) geometrically. Each run explores the tree with the given parameter D. In the pseudo-code,
we increase geometrically the beam size by 2. This parameter can be tuned, however, we did not notice a significant
variation in the performance while adjusting this parameter. This parameter (that can be a real number) should be
strictly larger than 1 (for the beam to expand) and should not be too large, say less than 3 or 5 (otherwise, the beam
grows too fast and when the time limit is reached, most of the computational time was possibly wasted in the last
incomplete beam, without providing any solution).

The Section 3 presents the branching schemes used to generate children (Algorithm 2.1, line 5) and the Section 4
presents ways to identify the best nodes (Algorithm 2.1, line 6).
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Algorithm 2.1: Iterative Beam Search algorithm
Input: root node

1 D ← 1
2 while stopping criterion not met do
3 Candidates ← {root}
4 while Candidates ≠ ∅ do
5 nextLevel ← ⋃

n∈Candidates children(n)
6 Candidates ← best D nodes among nextLevel
7 end
8 D ← D× 2
9 end

3. Branching schemes
We present in this section the two branching schemes we use (i.e. the search tree structure): the forward search

(i.e constructing the solution from the beginning) and the bi-directional search (i.e. constructing the solution from the
beginning and the end).
3.1. Forward branching

The forward branching assigns jobs at the first free position in the partial sequences (it constructs the solutions from
the beginning). The root corresponds to a situation where the candidate solution contains no job (i.e. c.STARTING = ∅).
Each of the search-tree nodes correspond to the first jobs in the resulting solution. Children of a given node correspond
to a possible insertion of each job that is not scheduled yet at the end of the schedule. Each node stores information
about the partial candidate solution (jobs already added), the release time of each machine, and the partial makespan
(resp. flowtime). A candidate solution (or node) c is considered as “goal” or “feasible” if all jobs are inserted (i.e.
c.STARTING = J ) and contains the following information:

• STARTING: vector of jobs inserted that lead to the candidate c (first jobs of the sequence we want to generate).
• FRONTSTARTING: vector of times where machines are first available after appending STARTING jobs.
Before presenting the forward children-generation, we present how to insert a job j ∈ J in a candidate solution c

(Algorithm 3.1). This insertion can be done in O(m) where m is the number of machines.

Algorithm 3.1: Forward search: insertion of job j in candidate solution c (INSERTFORWARD(c, j))
Input: candidate solution (or node) c
Input: job to be inserted j ∈ J

1 c.FRONTSTARTING1 ← c.FRONTSTARTING1 + Pj,1
2 for i ∈ {2,…m} do
3 if c.FRONTSTARTINGi−1 > c.FRONTSTARTINGi then

/* there is some idle time on machine i */
4 idle ← c.FRONTSTARTINGi−1 − c.FRONTSTARTINGi
5 c.FRONTSTARTINGi ← c.FRONTSTARTINGi−1 + Pj,i
6 else

/* no idle time on machine i */
7 c.FRONTSTARTINGi ← c.FRONTSTARTINGi + Pj,i
8 end
9 end

10 c.STARTING ← c.STARTING ∪ {j}

Algorithm 3.2 presents the forward branching pseudo-code (how to generate all children of a candidate solution
c).
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Algorithm 3.2: Forward search children generation from a candidate solution c (CHILDREN(c))
Input: candidate solution (or node) c

1 children ← ∅
2 for j ∈ unscheduled jobs do
3 children ← children ∪ INSERTFORWARD(Copy(c), j)
4 end
5 return children

3.2. Bi-directional branching
To the best of our knowledge, bi-directional branching was first introduced in 1980 [33]. The bi-directional search

appends jobs at the beginning and the end of the candidate solution. It aims to exploit the property of the inverse
problem (job order inversed and machine order inversed). Since then, the efficiency of this scheme has been largely
recognized to solve the makespan minimization optimally [2, 18, 19, 5, 3, 37]. Recently, a parallel branch-and-bound
was successfully used to solve the makespan minimization criterion [12] using this bi-directional scheme. Multiple
ways to decide if the algorithm performs a forward or backward insertion were studied (for instance alternating between
a forward insertion and backward insertion). This study found out that the best way is selecting the insertion type that
has the less remaining children after the bounding pruning step. Ties are broken by selecting the type of insertion that
maximizes the sum of the lower bounds as large lower bounds are usually a more precise estimation.

A candidate solution (or node) c is considered as “goal” or “feasible” if all jobs are inserted (i.e. c.STARTING ∪
c.FINISHING = J ) and contains the following information:

• STARTING: vector of jobs inserted at the beginning of the partial permutation that lead to the candidate c (first
jobs of the sequence we want to generate).

• FRONTSTARTING: vector of times where machines are first available after appending STARTING jobs.
• FINISHING: (inverted) vector of jobs inserted at the end of the partial permutation that lead to the candidate c

(last jobs of the sequence we want to generate).
• FRONTFINISHING: vector of times where machines are no more available after appending STARTING jobs.
Algorithm 3.3 presents the bi-directional branching pseudo-code. We use INSERTFORWARD (Algorithm 3.1) to

insert a job within the STARTING vector and INSERTBACKWARD that inserts a job within the FINISHING vector. This
procedure is almost similar to INSERTFORWARD but iterates over machines in an inverted order (m → 2 instead of
2 → m). It generates children of both the forward and backward search (lines 1-6), prunes nodes that are dominated by
the best-known solution (or upper-bound, lines 7-8). Then, it chooses the scheme that has fewer children (thus, usually
a smaller search-space) and breaks ties by selecting the scheme having the more precise lower bounds (sum of lower
bounds).

4. Guides
In the previous section, we discussed the branching rules that define a search tree. As such trees are usually large,

a way to tell which node is apriori more desirable is needed. In branch-and-bounds, this mechanism is called “bound”
and also constitutes an optimistic estimate of the best solution that can be achieved in a given sub-tree. In constructive
meta-heuristics, the guidance strategy is usually not an optimistic estimate which often allows finding better solutions
(for instance the LR [24] greedy guidance strategy). In this section, we present several guidance strategies for both the
makespan and flowtime criteria.
4.1. Bound

We define the bound guidance strategy for the forward search and makespan minimization as follows. It measures
the first time the last machine (machine m) is available and assumes that each remaining job can be scheduled without
any idle time.
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Algorithm 3.3: Bi-directional search children generation from a candidate solution c (CHILDREN(c))
Input: candidate solution (or node) c

1 F ← ∅ /* F correspond to the children obtained by forward search */
2 B ← ∅ /* B correspond to the children obtained by backward search */
3 for j ∈ unscheduled jobs do
4 F ← F ∪ INSERTFORWARD(Copy(c), j)
5 B ← B ∪ INSERTBACKWARD(Copy(c), j)
6 end
7 F ← {c|c ∈ F if BOUND(c) < best known solution} /* removing forward nodes dominated by the UB */
8 B ← {c|c ∈ B if BOUND(c) < best known solution} /* removing backward nodes dominated by the UB */
9 if |F| < |B| ∨ (|F| = |B| ∧

∑

c∈F BOUND(c) > ∑

c∈B BOUND(c)) then
10 return F /* chosing the forward search */
11 else
12 return B /* chosing the backward search */
13 end

Fgbound = Cmaxf,m + Rm

The bound guidance strategy for the bi-directional search and makespan minimization is defined as follows. It
generalizes the bound for the forward search by also taking into account the backward front. We may note that the
bi-directional branching allows computing a better bound as all machines are relevant for this bound (compared to the
forward branching bound in which only the last machine is used to compute a bound).

FBgbound = max
i∈M

(Cmaxf,i + Ri + Cmaxb,i)

The flowtime bound is defined as the sum of end times for each job scheduled in the forward search. Each time a
job is added to the candidate solution, the flowtime value is modified.
4.2. idle time

The bound guide is an effective guidance strategy, but is known to be imprecise at the beginning of the search
(i.e. the first levels of the search tree). Another guide that is usually considered as a part of effective greedy strategies
(for instance the LR heuristic) is to use the idle time of the partial solution. Usually, a solution with a small idle time
reaches good performance on both the makespan or flowtime criteria.

The idle time can be defined as follows:

FBgidle =
∑

i∈M
If,i + Ib,i

4.3. bound and idle time
As it is noted in many works [24, 7], another interesting guidance strategy is to combine both guidance strategies

discussed earlier (i.e. the bound and idle time guides). Indeed, while the bound guide is usually ineffective to guide
the search close to the root, it is very precise close to feasible solutions. Inversely, the idle time is an efficient guide
close to the root but relatively inefficient close to feasible solutions. We study the bound and idle time guide that
linearly reduces the contribution of the idle time to favor the bound depending on the completion level of the candidate
solution.

The bound and idle time guide can be defined as follows, where C is a value used to make the idle time and bound
comparable:

galpha = � . gbound + (1 − �) . C . gidle
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where � corresponds to the proportion of jobs added (i.e. 0 if no jobs are added, 1 if all jobs are added). It is
defined as follows: � = |F |+|B|

|J | for the bi-directional branching or � = |F |
|J | for the forward branching.

4.4. bound and weighted idle time
Another useful remark found in greedy algorithms for the permutation flowshop problem [24] is to add additional

weight to the idle time produced by the first machines at the beginning of the search (as it will have a greater impact on
the objective function than the others). However, the LR heuristic cannot be directly applied in a general tree search
context. Indeed, it is sometimes noted [7] that algorithms like the beam search usually compare nodes from different
parents, thus, it is needed to adapt the LR heuristic guidance that only compares nodes with the same parent. We
propose two different simple yet efficient ways to implement similar ideas. The search is guided by a combination of
a weighted idle time and by the bounding procedure.

The first guide, used for the forward search for the flowtime minimization is defined as follows, where Iw is the
weighted idle time and C = m.

∑

i∈M Ii
2 :

gwalpha = � . gbound + (1 − �) . (Iw + C)

At each time we add a job j to the end of the partial solution, we increase the weighted idle times as follows where
v is the idle time added by the job j in machine i:

Iw = Iw + v . (� . (m − i) + 1)

For the bi-directional branching, we present a new guidance strategy that considers the sum of idle time percentage
for each front. Doing this, it allows making idle time on the first machines more important to the forward search and
the idle time on the last machines more important to the backward search. The bound and weighted idle time guide for
the bi-directional search is defined as follows:

gwfrontalpha = (1 − �).gbound.
(

∑

i∈M

If,i
Cmaxf,i

+
Ib,i

Cmaxb,i

)

+ �.gbound

Notice that, during the bi-directional search, if only one direction is used (all jobs are inserted in the forward part
(resp. backward part)), gwfrontalpha is not defined. We choose to consider that gwfrontalpha = ∞ in this case. Indeed,
using both fronts allows better bounds and guides, thus nodes using only one front should be not chosen over nodes
that use both.
4.5. bound and gap

While solving some instances using a bi-directional branch-and-bound, we may notice that sometimes, the bound
is very tight (thus is also a good guide). We propose a new guide that uses the gap between the best soulution found
and the node bound (UB−LBUB ). If the gap is small (close to 0) the bound will be used more as a guide. If the gap is
large, the idle time will be more considered. The “gap” guide is defined as follows:

ggap =
UB

UB − LB
.gbound +

UB − LB
UB

.

(

∑

i∈M

If,i
Cmaxf,i

+
Ib,i

Cmaxb,i

)

Similarly to gwfrontalpha, ggap = ∞ if only one direction has been taken by the node.

5. Numerical results
In this section, we perform various experiments to evaluate the efficiency of the algorithms discussed in the pre-

vious sections. In Subsection 5.1, we present numerical results obtained in the makespan minimization version and
Subsection 5.2, the results obtained in the flowtime minimization version. All algorithms have been implemented in
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rust and executed on an AMD Ryzen 5 3600 CPU @3.6GHz with 32GB RAM. As the CPU has multiple physical
cores, we ran 4 tests in parallel to obtain results faster. For both objectives, we study the ARPD (Average Relative
Percentage Deviation), defined as follows:

ARPDIa =
∑

i∈I

Mai −M∗
i

M∗
i

. 100
|I|

where I is a set of instances with similar characteristics,Mai corresponds to the objective obtained by algorithm a on
instance i. AndM∗

i the reference solution objective for instance i. The ARPD describes the performance of a given
algorithm on a given instance type. For the makespan minimization (taillard benchmark), we used the best upper-
bounds provided on Taillard’s website1. For the makespan minimization (VFR benchmark, we used the best-results
provided by [29]2). For the flowtime minimization, we used the best solutions reported in [30].

For each instance and each criterion, we ran our algorithms for n.m.45 milliseconds where n is the number of jobs
andm the number of machines as it is usually done in the literature. We evaluate our algorithms on the famous Taillard
benchmark [40] (makespan and flowtime minimization) and on the famous VFR benchmark [43]. The first consists of
sets of 10 instances with a job number n ∈ {20, 50, 100, 200, 500} and machine number m ∈ {5, 10, 20}. The later
consists of sets of 10 instances with a job number n ∈ {100, 200…800}, a machine number m ∈ {20, 40, 60}. For
each variant, we compare our algorithms with state-of-the-art algorithms.
5.1. Makespan minimization
5.1.1. Iterative beam search performance comparison

In Sections 3,4, we presented multiple variants of the Iterative beam search (forward and bi-directional search, 5
different guides). Figure 3 presents a performance comparison of the different iterative beam search algorithms we
proposed.
Discussions: Regarding the forward branching procedures, we observe a significant improvement by including the
idle time in the guide and obtain the best results by including a weighted idle time within the guide (similarly to the
principles presented in the LR heuristic [24]). Indeed, ARPD ranges from 17% to 25% for the bound guide, and goes
down between 1% to 5% for the idle and gap guides on the VFR instances. We note that the wfrontalpha and gap
guides do not contribute much to the algorithm performance, and, surprisingly, simple guides (idle, alpha) perform
better.

Regarding the bi-directional branching procedures, we observe that the bound guide performs well in most cases,
from 0.16% to 8% ARPD. This can be explained as the bound gets tighter when the number of machines is low. Using
the idle time in the guide (idle time only or idle time combined with the bound) decreases the performance of the
algorithm (performances ranging from 2% to 17%). It seems to indicate that the idle time is a less efficient guide than
the bound for this branching strategy. Finally, using the “front-weighted” idle time proves to be a significant bonus
and largely improves the quality of the solutions, from −1.25% to 3% ARPD. The gap guide also allows improving
the results obtained by the bound guide. These results show that the bi-directional search with the wfrontalpha guide
performs well on most instances (especially those with a high number of machines) and the gap guide performs well
on instances with fewer machines. Thus, we use these algorithms to compare with the state-of-the-art algorithms.
5.1.2. Comparison with the state-of-the-art algorithms

The best performing algorithms in the literature are: The Variable Block Insertion Heuristic (VBIH) [15], the
Best-of-Breed Iterated Greedy algorithm (IGbob) [8], and, the Iterated Greedy designed using the EMILI framework
(IGirms) [29]. Figure 4 compares the performance of our algorithms with the VBIH algorithm. VBIH results are
obtained from the supplementary materials of [15]. CPU times are regularized to make a fair comparison. We do not
include results on the Taillard dataset as the authors of VBIH only compared it using the VFR benchmark. Figure 5
compares the performance of our algorithms with the IGirms algorithm. IGirms results are obtained from the supple-
mentary materials of [29]3. IGirms authors provide their ARPD values but not the solutions obtained for each instance
(thus, we cannot apply theWilcoxon signed-rank test). Figure 6 compares the performance of our algorithms compared

1http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/flowshop.dir/best_lb_up.txt
2http://iridia.ulb.ac.be/supp/IridiaSupp2018-002/
3http://iridia.ulb.ac.be/supp/IridiaSupp2018-002/
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Forward search bi-directional search
instance sets bound idle alpha wfrontalpha gap bound idle alpha wfrontalpha gap
TAI20_5 3.00 1.95 1.43 7.88 7.97 0.00 0.00 0.00 0.00 0.00
TAI20_10 6.28 0.89 0.92 11.17 11.27 0.03 0.36 0.36 0.00 0.03
TAI20_20 5.50 0.88 1.06 8.95 9.15 0.75 2.23 2.22 0.34 0.71
TAI50_5 6.39 0.89 1.07 9.01 9.13 0.00 0.00 0.00 0.11 0.00
TAI50_10 13.28 3.53 4.62 18.94 19.09 0.11 4.78 4.66 1.02 0.11
TAI50_20 14.58 3.04 3.39 20.49 20.29 2.86 7.55 7.23 0.55 2.91
TAI100_5 7.45 0.27 0.26 9.09 9.24 0.00 0.11 0.11 0.11 0.00
TAI100_10 14.20 1.52 1.46 15.01 15.21 0.00 2.55 2.32 1.18 0.00
TAI100_20 18.78 3.80 4.06 20.20 20.41 2.41 8.89 8.42 1.65 1.53
TAI200_10 13.66 1.27 1.36 12.31 12.37 0.00 1.49 1.48 2.24 1.05
TAI200_20 21.42 2.43 2.96 18.49 18.56 1.61 8.09 7.62 2.00 0.93
TAI500_20 20.29 1.77 1.99 14.24 14.20 0.65 4.63 5.30 1.49 0.18
VFR100_20 20.25 3.28 3.39 21.58 21.41 2.38 10.87 10.08 0.52 2.21
VFR100_40 17.68 4.81 5.48 19.83 19.73 5.66 10.00 9.61 1.65 5.57
VFR100_60 16.37 5.34 6.35 17.60 17.59 6.68 9.96 9.75 3.02 6.58
VFR200_20 21.12 2.65 2.78 19.54 19.58 1.37 11.13 10.12 1.12 0.77
VFR200_40 21.67 4.88 5.44 19.64 19.93 5.65 15.40 14.73 0.07 5.46
VFR200_60 20.09 5.65 5.96 18.83 18.75 8.20 16.03 15.53 1.82 7.84
VFR300_20 20.76 2.00 2.06 17.30 17.24 0.73 7.87 7.53 1.23 0.11
VFR300_40 23.29 4.63 5.04 18.69 18.75 6.08 17.13 16.91 -0.48 5.75
VFR300_60 20.47 5.66 6.00 18.05 18.02 7.86 12.66 11.99 1.08 7.96
VFR400_20 21.48 1.69 1.88 15.20 15.24 0.52 4.40 4.05 0.93 0.04
VFR400_40 23.40 4.15 4.60 17.92 17.88 5.71 16.17 16.28 -0.85 5.81
VFR400_60 21.12 5.73 6.11 17.30 17.25 7.91 17.39 17.49 0.07 8.37
VFR500_20 19.94 1.28 1.27 14.45 14.59 0.41 3.27 3.23 0.94 -0.01
VFR500_40 22.75 3.58 4.02 17.37 17.35 5.14 13.93 13.69 -0.66 5.21
VFR500_60 21.54 6.11 6.31 16.50 16.48 8.50 17.08 16.80 -0.61 7.91
VFR600_20 19.64 1.18 1.07 13.49 13.55 0.29 3.54 3.41 0.92 -0.08
VFR600_40 23.69 3.73 3.91 16.37 16.38 5.77 16.18 16.86 -0.50 5.41
VFR600_60 21.60 5.91 6.11 16.01 15.99 8.22 13.07 12.35 -0.80 7.58
VFR700_20 19.39 0.96 1.12 12.54 12.65 0.23 2.50 2.33 1.01 -0.11
VFR700_40 23.49 3.63 3.49 15.93 16.01 4.73 12.91 12.35 -0.37 4.33
VFR700_60 22.42 5.91 6.15 15.87 15.78 8.35 16.18 15.71 -1.06 7.95
VFR800_20 20.28 0.99 0.96 11.71 11.76 0.24 2.16 2.14 0.83 -0.07
VFR800_40 22.84 3.60 3.78 15.32 15.35 4.11 14.79 14.77 -0.38 3.99
VFR800_60 22.45 6.14 6.47 15.50 15.52 8.16 16.04 15.81 -1.11 7.94

Figure 3: Average Relative Percentage Deviation (ARPD) of all the presented algorithms on the Taillard and VFR instances
for the makespan minimization version. Bold values indicate that the algorithm obtained significantly better results then
the others according to the Wilcoxon signed-rank test with a 95% confidence interval.

to the IGbob algorithm [8]. As the authors provide their source-code, we executed their algorithm on our machine.
Figure 10 presents Pareto diagrams showing the time/performance tradeoff of our algorithms and the state-of-the-art
algorithms for 2 of the largest instance families (VFR800_20, VFR800_60).
discussions: From Tables 4,5,6, we remark that the wfrontalpha iterative beam search perform significantly better
on large instances (more than 500 jobs and 40 machines). It often reports negative ARPD (meaning that it was able
to consistently report new-best-known solutions compared to IGirms), even on short computation times. It also has to
be noted that on the Pareto diagrams 10, the iterative beam searches find better solutions in shorter computation times
on large instances than all the reported state-of-the-art results. Moreover, it can report new-best-known solutions on
large classes of instances in 200 seconds for the VFR800_20 instances and 80 seconds for the VFR800_60 instances.
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n.m.30∕2 CPU-regularized ms n.m.60∕2 CPU-regularized ms n.m.90∕2 CPU-regularized ms
instance set VBIH IBS wfrontalpha IBS gap VBIH IBS wfrontalpha IBS gap VBIH IBS wfrontalpha IBS gap

VFR100_20 0.27 0.73 2.98 0.23 0.65 2.50 0.04 0.65 2.21
VFR100_40 0.52 2.23 6.65 0.46 1.91 6.05 0.26 1.74 5.57
VFR100_60 0.63 3.80 7.44 0.57 3.52 6.94 0.41 3.02 6.58
VFR200_20 0.22 1.15 1.40 0.20 1.13 1.18 0.09 1.13 0.80
VFR200_40 0.56 0.59 6.46 0.52 0.35 5.84 0.24 0.07 5.71
VFR200_60 0.61 2.78 9.21 0.58 2.22 8.29 0.32 1.82 7.84
VFR300_20 0.20 1.36 0.73 0.16 1.27 0.21 0.12 1.26 0.12
VFR300_40 0.53 -0.09 6.56 0.49 -0.30 5.92 0.32 -0.48 5.75
VFR300_60 0.66 1.48 8.31 0.62 1.08 7.96 0.39 1.08 7.96
VFR400_20 0.15 1.03 0.30 0.12 0.94 0.10 0.07 0.93 0.10
VFR400_40 0.47 -0.63 6.35 0.43 -0.78 6.07 0.27 -0.85 5.81
VFR400_60 0.58 0.67 8.85 0.54 0.36 8.78 0.32 0.07 8.37
VFR500_20 0.12 1.02 0.20 0.11 0.97 0.05 0.05 0.94 -0.01
VFR500_40 0.55 -0.56 5.46 0.49 -0.63 5.26 0.34 -0.63 5.26
VFR500_60 0.41 -0.08 8.90 0.37 -0.51 8.45 0.18 -0.51 8.45
VFR600_20 0.12 1.11 0.09 0.11 1.00 0.04 0.09 1.00 -0.00
VFR600_40 0.50 -0.45 5.44 0.37 -0.47 5.44 0.27 -0.50 5.41
VFR600_60 0.64 -0.55 7.77 0.50 -0.69 7.58 0.43 -0.69 7.58
VFR700_20 0.10 1.04 -0.02 0.06 1.02 -0.09 0.05 1.02 -0.10
VFR700_40 0.42 -0.28 4.75 0.28 -0.32 4.37 0.20 -0.37 4.33
VFR700_60 0.55 -0.63 8.38 0.41 -0.89 7.98 0.31 -1.06 7.95
VFR800_20 0.07 0.88 0.01 0.06 0.86 -0.02 0.05 0.83 -0.07
VFR800_40 0.32 -0.26 4.25 0.30 -0.35 4.15 0.22 -0.38 4.15
VFR800_60 0.41 -0.77 8.09 0.37 -0.91 7.94 0.29 -1.11 7.94

Figure 4: Comparison with VBIH. Bold values indicate that the algorithm obtained significantly better results then the
others according to the Wilcoxon signed-rank test with a 95% confidence interval.

5.2. Flowtime minimization
5.2.1. Comparison with the state-of-the-art algorithms

The best performing algorithms in the literature are: IGA [30], ALGirtct [29], MRSILS(CBSH) [7] and Shake-LS
[1]. Figure 8 compares our algorithms with ALGirtct and IGA with the results presented in [29]. Figure 9 compares
our algorithms with MRSILS(CBSH). For both tables, the authors provide their ARPD values but not the solutions
obtained for each instance (thus, we cannot apply the Wilcoxon signed-rank test). Figure 10 presents Pareto diagrams
to evaluate our algorithms with state-of-the-art algorithms. Finally, the authors of Shake-LS report the best results
obtained by their algorithm (30 independent runs of 1 hour). We do not directly compare our running times (that
are much shorter), but we are still able to report many new-best-known solutions in Appendix B showing that our
algorithm can compete with Shake-LS. All the algorithms presented above perform their experiments on the Taillard
dataset [40].
discussions: We observe that both algorithms perform well for many instances and find new-best-known solutions.
By contrast with the makespan minimization, both guidance strategies are comparable in terms of performance (the
weighted idle time did not have a significant impact): sometimes galpha performs better than gwalpha and vice-versa.
We may note that the main difference between our results and the beam search algorithms found in the literature [7]
is that we use an iterative beam search that allows performing beam search with larger if the remaining time allows
it. This result seems to indicate that the iterative beam search can be of interest to the community as it reports good
results compared to other search strategies.

6. Conclusions & perspectives
In this paper, we present some iterative beam search algorithms applied to the permutation flowshop problem

(makespan and flowtime minimization). These algorithms use branching strategies inspired by the LR heuristic (for-
ward branching) and recent branch-and-bound schemes [12] (bi-directional branching). We compare several guidance
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n.m.60∕2 CPU-regularized ms n.m.120∕2 CPU-regularized ms n.m.240∕2 CPU-regularized ms
instance set IGirms IBS wfrontalpha IBS gap IGirms IBS wfrontalpha IBS gap IGirms IBS wfrontalpha IBS gap
TAI20_5 0.03 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00
TAI20_10 0.01 0.03 0.26 0.01 0.00 0.07 0.01 0.00 0.07
TAI20_20 0.01 0.56 1.09 0.01 0.51 0.88 0.01 0.34 0.72
TAI50_5 0.00 0.21 0.00 0.00 0.17 0.00 0.00 0.12 0.00
TAI50_10 0.30 1.52 0.15 0.28 1.22 0.13 0.25 1.02 0.11
TAI50_20 0.47 1.01 3.55 0.39 0.87 3.24 0.34 0.64 2.92
TAI100_5 0.00 0.27 0.00 0.00 0.20 0.00 0.00 0.11 0.00
TAI100_10 0.03 1.63 0.16 0.03 1.33 0.05 0.02 1.28 0.00
TAI100_20 0.62 2.19 2.32 0.52 2.06 2.12 0.44 1.78 1.53
TAI200_10 0.03 3.17 1.41 0.03 2.75 1.25 0.03 2.41 1.14
TAI200_20 0.66 2.06 1.54 0.57 2.04 1.14 0.51 2.00 1.04
TAI500_20 0.29 1.53 0.45 0.26 1.51 0.32 0.24 1.49 0.18
VFR100_20 0.57 0.83 3.33 0.42 0.73 2.74 0.29 0.65 2.21
VFR100_40 0.67 2.30 6.65 0.49 2.02 6.05 0.35 1.87 6.05
VFR100_60 0.64 3.80 7.44 0.48 3.52 6.94 0.34 3.02 6.58
VFR200_20 0.45 1.19 1.49 0.32 1.15 1.18 0.22 1.13 0.80
VFR200_40 0.79 0.73 6.53 0.52 0.48 6.15 0.30 0.35 5.84
VFR200_60 0.74 2.78 9.21 0.50 2.22 8.29 0.28 1.82 7.84
VFR300_20 0.35 1.41 0.86 0.24 1.36 0.59 0.17 1.26 0.12
VFR300_40 0.70 -0.09 6.56 0.48 -0.30 5.92 0.24 -0.48 5.75
VFR300_60 0.77 1.81 8.88 0.53 1.48 8.31 0.29 1.08 7.96
VFR400_20 0.21 1.11 0.33 0.16 1.02 0.23 0.12 0.93 0.10
VFR400_40 0.62 -0.63 6.35 0.42 -0.78 6.11 0.22 -0.85 6.07
VFR400_60 0.68 0.67 8.85 0.46 0.36 8.78 0.23 0.07 8.37
VFR500_20 0.17 1.02 0.22 0.13 0.97 0.06 0.09 0.94 -0.01
VFR500_40 0.54 -0.38 5.75 0.37 -0.56 5.46 0.20 -0.63 5.26
VFR500_60 0.61 0.29 9.10 0.41 -0.08 8.90 0.21 -0.51 8.45
VFR600_20 0.17 1.16 0.10 0.13 1.11 0.07 0.09 1.00 -0.00
VFR600_40 0.52 -0.37 5.44 0.34 -0.45 5.44 0.17 -0.50 5.41
VFR600_60 0.62 -0.28 7.88 0.42 -0.55 7.77 0.21 -0.69 7.58
VFR700_20 0.14 1.07 -0.01 0.10 1.04 -0.02 0.07 1.02 -0.10
VFR700_40 0.48 -0.28 4.75 0.31 -0.32 4.37 0.15 -0.37 4.33
VFR700_60 0.57 -0.63 8.38 0.37 -0.89 7.98 0.19 -1.06 7.95
VFR800_20 0.15 0.88 0.03 0.10 0.86 -0.01 0.07 0.83 -0.07
VFR800_40 0.46 -0.26 4.25 0.29 -0.35 4.25 0.14 -0.38 4.15
VFR800_60 0.51 -0.77 8.09 0.32 -0.91 7.94 0.15 -1.11 7.94

Figure 5: Comparison with IGirms

strategies (starting from the bound as commonly done inmost branch-and-bounds) to more advanced ones (LR-inspired
guidance). We show that the combination of all of these components obtains state-of-the-art performance. We report
101 new-best-so-far solutions for the permutation flowshop (makespan minimization) on the open instances of the
VFR benchmark and 51 new-best-so-far solutions for the permutation flowshop (flowtime minimization) on the open
instances of the Taillard benchmark. These algorithms compare, and sometimes perform better, than the algorithms
based on the NEH branching scheme (which is usually considered as “the most efficient constructive heuristic for the
problem” [8]) and the iterated greedy algorithm (again considered as “the most efficient approximate algorithm for the
problem” [8]). We believe that the performance of the bi-directional branching combined to the iterative beam search
highlighted in this paper could draw the interest of the community for these techniques as they are rather unexplored,
although simple and efficient. Studying these techniques leads to a few other questions: we considered the iterative
beam search and showed that it is competitive with classical meta-heuristics for the permutation flowshop. However,
many other exist. For instance Iterative Memory Bounded A* [9, 22], Beam Stack Search [47], Anytime Column
Search [41]. To the best of our knowledge, they have not been tested yet for the permutation flowshop. In this paper,
we studied the makespan and flowtime minimization criteria and achieved competitive results. Many more flowshop
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n.m.30∕2 ms n.m.60∕2 ms n.m.90∕2 ms
instance set IGbob IBS wfrontalpha IBS gap IGbob IBS wfrontalpha IBS gap IGbob IBS wfrontalpha IBS gap
TAI20_5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TAI20_10 0.00 0.03 0.11 0.00 0.00 0.07 0.00 0.00 0.03
TAI20_20 0.00 0.51 0.93 0.00 0.34 0.81 0.00 0.34 0.71
TAI50_5 0.00 0.17 0.00 0.00 0.12 0.00 0.00 0.11 0.00
TAI50_10 0.33 1.40 0.13 0.30 1.13 0.11 0.28 1.02 0.11
TAI50_20 0.43 0.87 3.24 0.33 0.64 2.92 0.31 0.55 2.91
TAI100_5 0.00 0.27 0.00 0.00 0.19 0.00 0.00 0.11 0.00
TAI100_10 0.03 1.37 0.05 0.02 1.30 0.01 0.02 1.18 0.00
TAI100_20 0.60 2.06 2.12 0.52 1.78 1.53 0.50 1.65 1.53
TAI200_10 0.03 2.75 1.25 0.03 2.41 1.14 0.03 2.24 1.05
TAI200_20 0.62 2.04 1.14 0.60 2.00 1.04 0.51 2.00 0.93
TAI500_20 0.26 1.52 0.32 0.24 1.50 0.28 0.23 1.49 0.18
VFR100_20 0.53 0.73 2.74 0.38 0.65 2.21 0.40 0.52 2.21
VFR100_40 0.67 2.23 6.65 0.55 1.91 6.05 0.46 1.65 5.57
VFR100_60 0.75 3.52 6.94 0.52 3.02 6.58 0.46 3.02 6.58
VFR200_20 0.38 1.15 1.18 0.33 1.13 0.80 0.22 1.12 0.77
VFR200_40 0.76 0.59 6.46 0.50 0.35 5.84 0.39 0.07 5.46
VFR200_60 0.72 2.22 8.29 0.51 2.06 7.84 0.41 1.82 7.84
VFR300_20 0.39 1.36 0.66 0.26 1.27 0.21 0.21 1.23 0.11
VFR300_40 0.64 -0.30 5.92 0.47 -0.48 5.75 0.33 -0.48 5.75
VFR300_60 0.73 1.48 8.31 0.53 1.08 7.96 0.39 1.08 7.96
VFR400_20 0.25 1.02 0.30 0.18 0.93 0.10 0.15 0.93 0.04
VFR400_40 0.52 -0.63 6.35 0.34 -0.78 6.07 0.21 -0.85 5.81
VFR400_60 0.58 0.36 8.78 0.37 0.19 8.65 0.28 0.07 8.37
VFR500_20 0.18 1.01 0.12 0.15 0.96 -0.01 0.11 0.94 -0.01
VFR500_40 0.54 -0.56 5.46 0.37 -0.63 5.26 0.25 -0.66 5.21
VFR500_60 0.41 -0.08 8.90 0.23 -0.51 8.45 0.12 -0.61 7.91
VFR600_20 0.14 1.11 0.08 0.11 1.00 0.01 0.08 0.92 -0.08
VFR600_40 0.35 -0.45 5.44 0.18 -0.50 5.41 0.09 -0.50 5.41
VFR600_60 0.46 -0.55 7.77 0.32 -0.69 7.58 0.19 -0.80 7.58
VFR700_20 0.11 1.04 -0.02 0.08 1.02 -0.10 0.07 1.01 -0.11
VFR700_40 0.34 -0.32 4.63 0.19 -0.37 4.37 0.12 -0.37 4.33
VFR700_60 0.42 -0.89 7.98 0.24 -1.06 7.95 0.13 -1.06 7.95
VFR800_20 0.09 0.86 -0.01 0.06 0.83 -0.05 0.05 0.83 -0.07
VFR800_40 0.31 -0.26 4.25 0.18 -0.35 4.15 0.09 -0.38 3.99
VFR800_60 0.37 -0.91 8.01 0.24 -1.02 7.94 0.15 -1.11 7.94

Figure 6: Comparison with IGbob. Bold values indicate that the algorithm obtained significantly better results then the
others according to the Wilcoxon signed-rank test with a 95% confidence interval.

variants have been studied. For instance, the blocking flowshop, the distributed permutation flowshop andmany others.
It could be interesting to assess the performance of the LR-based beam search on these variants.
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Figure 8: Comparison with ALGirtct and IGA for the flowtime minimization variant (Taillard benchmark)
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Figure 9: Comparison with MRSILS(CBSH) with the same running times (n.m.30 CPU-regularized ms)
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A. Notations
• J : all the jobs
• M : all the machines
• n: job number (n = |J |)
• m: machine number (m = |M|)
• F (resp. B): all the jobs scheduled in the prefix (resp. suffix)
• Cmaxf,i: first availability of machine i in the forward search
• Cmaxb,i: first availability of machine i in the backward search
• Ri: remaining processing time on machine i. Ri = ∑

j∈J⧵{F∪B} pij

• If,i: total idle time on machine i in the forward search
• Ib,i: total idle time on machine i in the backward search
• �: proportion of scheduled jobs. � = |F |+|B|

|J | on bi-directional branching or � = |F |
|J | on forward branching.

• gbound: guidance function based on the bound (makespan or flowtime)
• gidle: guidance function based only by the idle time
• galpha: guidance function based on both the bound and idle time
• gwalpha: guidance function based on both the bound and weighted idle time
• gwfrontalpha: guidance function based on both the bound and the proportion of idle time in the partial solution
• ggap: guidance function based on both the gap, bound, and weighted idle time

B. detailed numerical results
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instance Gmys_B&B IGrms VBIH IGbob IBS_gap IBS_wfrontalpha
VFR100_20_1 6.121 6.176 6.173 6.178 6.252 6.170
VFR100_20_2 6.224 6.267 6.227 6.286 6.364 6.287
VFR100_20_3 6.157 6.210 6.264 6.216 6.319 6.232
VFR100_20_4 6.173 6.223 6.285 6.229 6.287 6.257
VFR100_20_5 6.221 6.260 6.401 6.270 6.425 6.322
VFR100_20_6 6.247 6.274 6.074 6.304 6.504 6.342
VFR100_20_7 6.358 6.411 6.328 6.416 6.575 6.412
VFR100_20_8 6.023 6.074 6.125 6.088 6.242 6.093
VFR100_20_9 6.286 6.324 6.267 6.329 6.476 6.347
VFR100_20_10 6.048 6.119 6.221 6.140 6.271 6.202
VFR100_40_1 - 7.840 7.846 7.844 8.263 7.980
VFR100_40_2 - 7.957 7.913 7.967 8.390 8.043
VFR100_40_3 - 7.889 7.997 7.905 8.308 7.979
VFR100_40_4 - 7.895 7.993 7.911 8.298 8.027
VFR100_40_5 - 7.968 7.980 8.002 8.444 8.087
VFR100_40_6 - 7.988 7.957 7.994 8.416 8.111
VFR100_40_7 - 7.956 7.888 7.980 8.409 8.163
VFR100_40_8 - 7.936 7.917 7.956 8.441 8.100
VFR100_40_9 - 7.853 7.976 7.882 8.354 7.978
VFR100_40_10 - 7.894 7.894 7.923 8.266 8.018
VFR100_60_1 - 9.326 9.353 9.350 10.051 9.677
VFR100_60_2 - 9.513 9.403 9.539 10.072 9.717
VFR100_60_3 - 9.316 9.431 9.332 9.908 9.601
VFR100_60_4 - 9.366 9.630 9.390 9.974 9.589
VFR100_60_5 - 9.391 9.346 9.404 9.993 9.639
VFR100_60_6 - 9.622 9.523 9.641 10.234 9.944
VFR100_60_7 - 9.326 9.488 9.358 9.970 9.635
VFR100_60_8 - 9.507 9.572 9.511 10.128 9.815
VFR100_60_9 - 9.480 9.567 9.494 10.141 9.823
VFR100_60_10 - 9.547 9.349 9.568 10.134 9.807
VFR200_20_1 11.181 11.271 11.272 11.283 11.260 11.416
VFR200_20_2 11.254 11.227 11.188 11.236 11.262 11.439
VFR200_20_3 11.233 11.297 11.143 11.294 11.523 11.373
VFR200_20_4 11.090 11.175 11.310 11.177 11.307 11.245
VFR200_20_5 11.076 11.152 11.365 11.147 11.292 11.285
VFR200_20_6 11.208 11.301 11.128 11.311 11.339 11.393
VFR200_20_7 11.266 11.347 11.091 11.356 11.438 11.439
VFR200_20_8 11.041 11.107 11.294 11.118 11.041 11.268
VFR200_20_9 11.008 11.069 11.240 11.074 11.308 11.254
VFR200_20_10 11.193 11.286 11.294 11.278 11.322 11.370
VFR200_40_1 - 13.077 13.124 13.084 13.794 13.107
VFR200_40_2 - 13.027 13.163 13.053 13.688 13.036
VFR200_40_3 - 13.197 12.974 13.216 13.832 13.194
VFR200_40_4 - 13.111 13.061 13.114 13.745 13.110
VFR200_40_5 - 12.927 13.220 12.957 13.601 12.945
VFR200_40_6 - 13.023 13.132 13.040 13.772 13.055
VFR200_40_7 - 13.188 13.033 13.204 14.099 13.204
VFR200_40_8 - 13.089 13.146 13.133 13.782 13.107
VFR200_40_9 - 13.042 13.049 13.077 13.782 13.051
VFR200_40_10 - 13.134 13.222 13.134 13.865 13.091
VFR200_60_1 - 14.861 14.906 14.884 16.102 15.020
VFR200_60_2 - 14.890 14.968 14.905 16.078 15.062
VFR200_60_3 - 15.103 15.042 15.141 16.462 15.446
VFR200_60_4 - 14.918 14.996 14.942 16.075 15.279
VFR200_60_5 - 15.020 15.006 15.030 16.258 15.348
VFR200_60_6 - 14.909 14.894 14.948 15.969 15.101
VFR200_60_7 - 14.956 14.925 14.991 16.170 15.179
VFR200_60_8 - 14.852 14.908 14.898 16.042 15.119
VFR200_60_9 - 14.867 14.909 14.900 15.972 15.167
VFR200_60_10 - 14.881 15.134 14.891 15.838 15.251

Figure 11: Makespan minimization full results: 100 and 200 jobs
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instance Gmys_B&B IGrms VBIH IGbob IBS_gap IBS_wfrontalpha
VFR300_20_1 15.996 16.092 16.089 16.098 16.153 16.236
VFR300_20_2 16.409 16.465 16.168 16.463 16.470 16.648
VFR300_20_3 16.010 16.115 16.307 16.139 16.152 16.344
VFR300_20_4 16.052 16.125 16.095 16.149 16.060 16.309
VFR300_20_5 21.399 16.293 16.244 16.321 16.278 16.522
VFR300_20_6 16.021 16.062 16.369 16.063 16.021 16.320
VFR300_20_7 16.188 16.228 16.324 16.226 16.215 16.375
VFR300_20_8 16.287 16.363 16.798 16.371 16.545 16.516
VFR300_20_9 16.203 16.298 16.483 16.335 16.347 16.492
VFR300_20_10 16.780 16.794 16.129 16.794 16.780 17.075
VFR300_40_1 - 18.127 18.199 18.116 19.157 18.056
VFR300_40_2 - 18.341 18.227 18.330 19.199 18.224
VFR300_40_3 - 18.276 18.343 18.317 19.393 18.249
VFR300_40_4 - 18.181 18.340 18.263 19.467 18.095
VFR300_40_5 - 18.320 18.396 18.343 19.545 18.198
VFR300_40_6 - 18.250 18.290 18.318 19.444 18.177
VFR300_40_7 - 18.283 18.261 18.301 19.204 18.202
VFR300_40_8 - 18.238 18.286 18.237 19.149 18.193
VFR300_40_9 - 18.226 18.373 18.268 19.393 18.093
VFR300_40_10 - 18.253 18.348 18.230 19.037 18.135
VFR300_60_1 - 20.397 20.483 20.420 21.942 20.561
VFR300_60_2 - 20.224 20.293 20.250 21.722 20.444
VFR300_60_3 - 20.244 20.200 20.288 22.124 20.468
VFR300_60_4 - 20.235 20.280 20.203 21.711 20.477
VFR300_60_5 - 20.156 20.358 20.202 21.651 20.235
VFR300_60_6 - 20.180 20.319 20.254 21.691 20.427
VFR300_60_7 - 20.285 20.405 20.306 21.834 20.509
VFR300_60_8 - 20.291 20.385 20.293 21.959 20.668
VFR300_60_9 - 20.326 20.249 20.365 22.059 20.503
VFR300_60_10 - 20.290 20.328 20.345 22.075 20.524
VFR400_20_1 20.952 21.027 21.042 21.051 21.098 21.174
VFR400_20_2 21.346 21.411 21.237 21.432 21.527 21.586
VFR400_20_3 21.379 21.426 21.528 21.421 21.426 21.763
VFR400_20_4 21.125 21.231 21.188 21.226 21.171 21.492
VFR400_20_5 16.245 21.497 21.599 21.543 21.430 21.678
VFR400_20_6 21.075 21.165 21.264 21.177 21.289 21.278
VFR400_20_7 21.507 21.580 21.293 21.604 21.526 21.842
VFR400_20_8 21.198 21.264 21.526 21.261 21.216 21.455
VFR400_20_9 21.236 21.301 21.411 21.298 21.379 21.468
VFR400_20_10 21.456 21.524 21.428 21.524 21.456 21.678
VFR400_40_1 - 23.362 23.393 23.323 24.751 23.139
VFR400_40_2 - 23.257 23.269 23.274 24.529 23.037
VFR400_40_3 - 23.405 23.213 23.420 24.589 23.202
VFR400_40_4 - 23.220 23.298 23.211 24.925 22.894
VFR400_40_5 - 23.141 23.415 23.153 24.754 22.947
VFR400_40_6 - 23.292 23.290 23.318 24.603 23.092
VFR400_40_7 - 23.364 23.424 23.343 24.672 23.184
VFR400_40_8 - 23.266 23.606 23.228 24.633 23.131
VFR400_40_9 - 23.457 23.380 23.438 24.763 23.323
VFR400_40_10 - 23.504 23.467 23.535 24.597 23.348
VFR400_60_1 - 25.392 25.395 25.440 27.595 25.292
VFR400_60_2 - 25.498 25.638 25.525 27.667 25.473
VFR400_60_3 - 25.590 25.669 25.541 27.866 25.658
VFR400_60_4 - 25.608 25.407 25.658 27.927 25.813
VFR400_60_5 - 25.615 25.415 25.554 27.565 25.697
VFR400_60_6 - 25.358 25.603 25.350 27.441 25.398
VFR400_60_7 - 25.372 25.673 25.394 27.643 25.404
VFR400_60_8 - 25.541 25.658 25.593 27.632 25.469
VFR400_60_9 - 25.622 25.549 25.672 27.443 25.622
VFR400_60_10 - 25.618 25.707 25.631 27.797 25.556

Figure 12: Makespan minimization full results: 300 and 400 jobs
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instance Gmys_B&B IGrms VBIH IGbob IBS_gap IBS_wfrontalpha
VFR500_20_1 26.253 26.355 26.374 26.351 26.356 26.563
VFR500_20_2 26.555 26.631 26.080 26.638 26.708 26.869
VFR500_20_3 26.268 26.357 26.759 26.356 26.344 26.597
VFR500_20_4 25.994 26.058 26.411 26.076 26.009 26.316
VFR500_20_5 26.703 26.729 26.409 26.729 26.727 27.108
VFR500_20_6 26.325 26.395 26.305 26.402 26.325 26.558
VFR500_20_7 26.313 26.401 26.430 26.401 26.438 26.680
VFR500_20_8 26.217 26.302 26.034 26.302 26.327 26.496
VFR500_20_9 26.345 26.410 26.641 26.419 26.405 26.650
VFR500_20_10 26.345 26.043 26.359 26.055 26.024 26.323
VFR500_40_1 - 28.362 28.402 28.353 30.321 28.129
VFR500_40_2 - 28.503 28.615 28.522 30.012 28.308
VFR500_40_3 - 28.374 28.579 28.442 29.620 28.235
VFR500_40_4 - 28.477 28.432 28.530 29.824 28.329
VFR500_40_5 - 28.543 28.553 28.518 30.019 28.283
VFR500_40_6 - 28.248 28.488 28.336 29.535 28.134
VFR500_40_7 - 28.486 28.640 28.551 29.900 28.323
VFR500_40_8 - 28.435 28.644 28.444 30.130 28.307
VFR500_40_9 - 28.640 28.613 28.610 30.351 28.406
VFR500_40_10 - 28.585 28.526 28.582 29.784 28.324
VFR500_60_1 - 30.609 30.682 30.649 33.168 30.429
VFR500_60_2 - 30.597 30.793 30.608 32.593 30.480
VFR500_60_3 - 30.823 30.763 30.799 33.506 30.553
VFR500_60_4 - 30.796 30.788 30.740 32.712 30.672
VFR500_60_5 - 30.700 30.826 30.727 33.339 30.540
VFR500_60_6 - 30.829 30.837 30.795 33.635 30.597
VFR500_60_7 - 30.733 30.805 30.680 32.988 30.528
VFR500_60_8 - 30.729 30.866 30.738 33.551 30.465
VFR500_60_9 - 30.785 30.664 30.777 33.224 30.515
VFR500_60_10 - 30.828 30.852 30.809 33.044 30.787
VFR600_20_1 31.303 31.359 31.372 31.354 31.303 31.525
VFR600_20_2 31.281 31.372 31.487 31.369 31.317 31.688
VFR600_20_3 31.374 31.412 31.407 31.412 31.374 31.676
VFR600_20_4 31.417 31.480 31.696 31.491 31.440 31.733
VFR600_20_5 31.323 31.387 31.527 31.389 31.476 31.659
VFR600_20_6 31.613 31.668 31.523 31.669 31.615 31.983
VFR600_20_7 31.461 31.483 31.532 31.527 31.461 31.893
VFR600_20_8 31.414 31.465 31.107 31.483 31.428 31.709
VFR600_20_9 31.473 31.514 31.397 31.515 31.554 31.971
VFR600_20_10 31.021 31.107 31.429 31.107 31.021 31.310
VFR600_40_1 - 33.618 33.683 33.600 35.743 33.339
VFR600_40_2 - 33.356 33.584 33.311 34.981 33.200
VFR600_40_3 - 33.612 33.401 33.576 35.364 33.415
VFR600_40_4 - 33.477 33.626 33.502 35.517 33.235
VFR600_40_5 - 33.307 33.545 33.280 34.823 33.188
VFR600_40_6 - 33.552 33.298 33.563 35.094 33.422
VFR600_40_7 - 33.492 33.567 33.495 35.679 33.409
VFR600_40_8 - 33.282 33.473 33.279 34.878 33.068
VFR600_40_9 - 33.422 33.405 33.441 35.346 33.270
VFR600_40_10 - 33.396 33.713 33.364 35.186 33.308
VFR600_60_1 - 35.863 35.976 35.862 38.094 35.504
VFR600_60_2 - 35.791 36.000 35.814 38.503 35.450
VFR600_60_3 - 35.896 36.004 35.940 38.501 35.670
VFR600_60_4 - 35.883 35.943 35.833 38.457 35.610
VFR600_60_5 - 35.929 35.965 35.880 38.553 35.466
VFR600_60_6 - 35.828 35.894 35.844 38.848 35.617
VFR600_60_7 - 35.882 35.987 35.952 38.517 35.741
VFR600_60_8 - 35.784 35.943 35.887 38.558 35.368
VFR600_60_9 - 35.935 35.923 35.882 39.466 35.693
VFR600_60_10 - 35.804 35.917 35.916 38.297 35.597

Figure 13: Makespan minimization full results: 500 and 600 jobs
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instance Gmys_B&B IGrms VBIH IGbob IBS_gap IBS_wfrontalpha
VFR700_20_1 36.285 36.354 36.388 36.360 36.294 36.760
VFR700_20_2 36.220 36.303 36.380 36.316 36.244 36.726
VFR700_20_3 36.419 36.487 36.556 36.487 36.547 36.843
VFR700_20_4 36.361 36.379 36.645 36.384 36.361 36.788
VFR700_20_5 36.496 36.547 36.597 36.547 36.496 36.961
VFR700_20_6 36.556 36.610 36.492 36.615 36.556 36.926
VFR700_20_7 36.540 36.609 36.315 36.612 36.540 36.903
VFR700_20_8 36.418 36.481 36.386 36.465 36.418 36.775
VFR700_20_9 36.212 36.290 36.316 36.277 36.222 36.610
VFR700_20_10 36.362 36.376 36.519 36.398 36.362 36.809
VFR700_40_1 - 38.720 38.767 38.674 40.414 38.550
VFR700_40_2 - 38.499 38.597 38.524 40.378 38.291
VFR700_40_3 - 38.393 38.490 38.392 40.543 38.141
VFR700_40_4 - 38.593 38.440 38.585 40.522 38.430
VFR700_40_5 - 38.430 38.355 38.452 39.973 38.267
VFR700_40_6 - 38.336 38.817 38.350 39.825 38.291
VFR700_40_7 - 38.287 38.569 38.298 40.051 38.058
VFR700_40_8 - 38.766 38.712 38.735 40.377 38.693
VFR700_40_9 - 38.452 38.560 38.503 39.661 38.413
VFR700_40_10 - 38.647 38.460 38.598 40.042 38.566
VFR700_60_1 - 41.125 41.192 41.097 44.623 40.615
VFR700_60_2 - 41.008 41.120 40.994 43.069 40.664
VFR700_60_3 - 40.961 41.167 40.957 44.120 40.581
VFR700_60_4 - 41.070 41.159 40.997 44.001 40.491
VFR700_60_5 - 41.022 40.734 41.002 44.522 40.650
VFR700_60_6 - 40.994 41.305 40.983 44.849 40.472
VFR700_60_7 - 40.572 41.111 40.584 43.977 40.171
VFR700_60_8 - 41.121 41.186 41.140 44.205 40.797
VFR700_60_9 - 40.930 41.002 40.945 44.642 40.421
VFR700_60_10 - 41.093 41.173 41.083 44.467 40.682
VFR800_20_1 41.413 41.477 41.479 41.514 41.433 41.769
VFR800_20_2 41.282 41.337 41.426 41.337 41.286 41.613
VFR800_20_3 41.319 41.362 41.705 41.370 41.319 41.581
VFR800_20_4 41.375 41.426 41.961 41.426 41.443 41.919
VFR800_20_5 41.626 41.702 41.395 41.705 41.626 41.948
VFR800_20_6 41.919 41.959 41.435 41.957 41.919 42.375
VFR800_20_7 41.342 41.379 41.783 41.394 41.352 41.715
VFR800_20_8 41.390 41.429 41.568 41.430 41.539 41.951
VFR800_20_9 41.697 41.753 41.345 41.753 41.697 42.035
VFR800_20_10 41.489 41.561 41.399 41.565 41.489 41.942
VFR800_40_1 - 43.456 43.466 43.435 45.354 43.221
VFR800_40_2 - 43.483 43.743 43.516 45.309 43.326
VFR800_40_3 - 43.512 43.794 43.461 45.254 43.255
VFR800_40_4 - 43.557 43.638 43.632 44.981 43.499
VFR800_40_5 - 43.635 43.484 43.639 45.670 43.581
VFR800_40_6 - 43.549 43.666 43.549 45.459 43.256
VFR800_40_7 - 43.458 43.643 43.438 45.455 43.311
VFR800_40_8 - 43.548 43.630 43.555 44.822 43.387
VFR800_40_9 - 43.497 43.575 43.517 45.269 43.389
VFR800_40_10 - 43.592 43.596 43.567 45.091 43.392
VFR800_60_1 - 46.130 46.279 46.103 49.987 45.683
VFR800_60_2 - 46.164 46.261 46.167 49.777 45.714
VFR800_60_3 - 46.108 46.164 46.099 49.532 45.627
VFR800_60_4 - 46.035 46.288 46.157 49.545 45.558
VFR800_60_5 - 46.101 46.061 46.085 49.600 45.614
VFR800_60_6 - 46.110 46.257 46.124 50.056 45.477
VFR800_60_7 - 45.986 46.279 46.003 49.273 45.524
VFR800_60_8 - 46.136 46.211 46.206 49.679 45.510
VFR800_60_9 - 46.226 46.232 46.229 50.036 45.808
VFR800_60_10 - 46.004 46.258 45.995 50.099 45.383

Figure 14: Makespan minimization full results: 700 and 800 jobs
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Iterative beam search algorithms for the permutation flowshop

instance ALGirtct shake-LS IBS_alpha IBS_walpha
TA1 / TA20_5_0 14.033 14.033 14.033 14.033
TA2 / TA20_5_1 15.151 15.151 15.151 15.151
TA3 / TA20_5_2 13.301 13.301 13.301 13.313
TA4 / TA20_5_3 15.447 15.447 15.447 15.447
TA5 / TA20_5_4 13.529 13.529 13.529 13.529
TA6 / TA20_5_5 13.123 13.123 13.123 13.123
TA7 / TA20_5_6 13.548 13.548 13.548 13.548
TA8 / TA20_5_7 13.948 13.948 13.948 13.948
TA9 / TA20_5_8 14.295 14.295 14.295 14.295
TA10 / TA20_5_9 12.943 12.943 12.943 12.943
TA11 / TA20_10_0 20.911 20.911 20.911 20.911
TA12 / TA20_10_1 22.440 22.440 22.440 22.652
TA13 / TA20_10_2 19.833 19.833 19.833 19.877
TA14 / TA20_10_3 18.710 18.710 18.710 18.779
TA15 / TA20_10_4 18.641 18.641 18.641 18.641
TA16 / TA20_10_5 19.245 19.245 19.245 19.414
TA17 / TA20_10_6 18.363 18.363 18.363 18.462
TA18 / TA20_10_7 20.241 20.241 20.241 20.268
TA19 / TA20_10_8 20.330 20.330 20.330 20.481
TA20 / TA20_10_9 21.320 21.320 21.320 21.420
TA21 / TA20_20_0 33.623 33.623 33.623 33.638
TA22 / TA20_20_1 31.587 31.587 31.587 31.785
TA23 / TA20_20_2 33.920 33.920 33.920 34.318
TA24 / TA20_20_3 31.661 31.661 31.661 31.661
TA25 / TA20_20_4 34.557 34.557 34.557 34.726
TA26 / TA20_20_5 32.564 32.564 32.564 32.988
TA27 / TA20_20_6 32.922 32.922 32.922 33.199
TA28 / TA20_20_7 32.412 32.412 32.412 32.688
TA29 / TA20_20_8 33.600 33.600 33.600 34.235
TA30 / TA20_20_9 32.262 32.262 32.262 32.698
TA31 / TA50_5_0 64.802 64.802 65.207 64.904
TA32 / TA50_5_1 68.051 68.051 68.149 68.096
TA33 / TA50_5_2 63.162 63.162 63.247 63.162
TA34 / TA50_5_3 68.226 68.226 68.242 68.226
TA35 / TA50_5_4 69.351 69.351 69.895 69.460
TA36 / TA50_5_5 66.841 66.841 66.910 66.841
TA37 / TA50_5_6 66.253 66.253 66.427 66.277
TA38 / TA50_5_7 64.332 64.332 64.471 64.426
TA39 / TA50_5_8 62.981 62.981 63.878 63.212
TA40 / TA50_5_9 68.770 68.770 68.895 68.834

Figure 15: Flowtime minimization full results: TAI1 to TAI40
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Iterative beam search algorithms for the permutation flowshop

instance ALGirtct shake-LS IBS_alpha IBS_walpha
TA41 / TA50_10_0 87.114 87.114 87.183 87.413
TA42 / TA50_10_1 82.820 82.820 82.967 83.548
TA43 / TA50_10_2 79.931 79.931 80.148 80.411
TA44 / TA50_10_3 86.446 86.446 86.609 86.661
TA45 / TA50_10_4 86.377 86.377 86.567 86.628
TA46 / TA50_10_5 86.587 86.587 86.729 87.025
TA47 / TA50_10_6 88.750 88.750 89.739 89.867
TA48 / TA50_10_7 86.727 86.727 87.078 87.749
TA49 / TA50_10_8 85.441 85.441 85.952 86.532
TA50 / TA50_10_9 87.998 87.998 88.546 88.967
TA51 / TA50_20_0 125.831 125.831 125.850 126.406
TA52 / TA50_20_1 119.247 119.247 119.463 120.630
TA53 / TA50_20_2 116.459 116.459 116.536 118.533
TA54 / TA50_20_3 120.261 120.261 121.035 121.614
TA55 / TA50_20_4 118.184 118.184 118.379 119.974
TA56 / TA50_20_5 120.586 120.586 120.897 121.671
TA57 / TA50_20_6 122.880 122.880 123.120 124.423
TA58 / TA50_20_7 122.489 122.489 122.583 124.033
TA59 / TA50_20_8 121.872 121.872 121.872 123.347
TA60 / TA50_20_9 123.954 123.954 124.458 125.425
TA61 / TA100_5_0 253.167 253.167 252.863 252.780
TA62 / TA100_5_1 241.989 241.925 241.738 241.858
TA63 / TA100_5_2 237.832 237.832 237.331 237.412
TA64 / TA100_5_3 227.738 227.522 228.013 227.335
TA65 / TA100_5_4 240.301 240.301 240.114 240.144
TA66 / TA100_5_5 232.247 232.342 232.177 232.078
TA67 / TA100_5_6 240.366 240.366 240.790 239.994
TA68 / TA100_5_7 230.866 230.945 230.328 230.405
TA69 / TA100_5_8 247.771 247.526 247.478 247.611
TA70 / TA100_5_9 242.933 242.933 243.710 243.156
TA71 / TA100_10_0 298.385 298.385 298.578 299.198
TA72 / TA100_10_1 273.674 273.674 273.852 273.282
TA73 / TA100_10_2 288.114 288.114 288.302 287.614
TA74 / TA100_10_3 301.044 301.044 300.738 300.818
TA75 / TA100_10_4 284.148 284.233 283.961 284.023
TA76 / TA100_10_5 269.686 269.686 269.672 269.664
TA77 / TA100_10_6 279.463 279.463 281.049 280.196
TA78 / TA100_10_7 290.703 290.908 290.252 290.856
TA79 / TA100_10_8 301.970 301.970 301.967 302.783
TA80 / TA100_10_9 291.283 291.283 291.566 291.293

Figure 16: Flowtime minimization full results: TAI41 to TAI80
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Iterative beam search algorithms for the permutation flowshop

instance ALGirtct shake-LS IBS_alpha IBS_walpha
TA81 / TA100_20_0 365.463 365.463 366.625 368.870
TA82 / TA100_20_1 372.001 372.449 371.544 374.294
TA83 / TA100_20_2 370.027 370.027 369.571 375.822
TA84 / TA100_20_3 372.393 372.393 371.683 375.772
TA85 / TA100_20_4 368.915 368.915 368.393 371.224
TA86 / TA100_20_5 370.908 370.908 370.953 376.096
TA87 / TA100_20_6 373.408 373.408 372.606 376.264
TA88 / TA100_20_7 384.525 384.525 384.292 387.387
TA89 / TA100_20_8 374.423 374.423 374.413 378.309
TA90 / TA100_20_9 379.296 379.296 378.948 381.752
TA91 / TA200_10_0 1.042.452 1.041.023 1.041.139 1.035.643
TA92 / TA200_10_1 1.028.775 1.028.828 1.026.655 1.025.575
TA93 / TA200_10_2 1.043.631 1.042.357 1.043.126 1.040.027
TA94 / TA200_10_3 1.023.188 1.025.564 1.023.864 1.019.733
TA95 / TA200_10_4 1.028.506 1.028.963 1.030.206 1.023.655
TA96 / TA200_10_5 998.686 998.340 996.911 994.767
TA97 / TA200_10_6 1.042.570 1.042.570 1.041.190 1.039.256
TA98 / TA200_10_7 1.035.945 1.035.915 1.035.240 1.034.400
TA99 / TA200_10_8 1.015.560 1.015.280 1.015.094 1.013.493
TA100 / TA200_10_9 1.021.633 1.021.865 1.019.093 1.017.843
TA101 / TA200_20_0 1.221.768 1.219.341 1.213.435 1.225.238
TA102 / TA200_20_1 1.231.880 1.233.161 1.232.137 1.233.707
TA103 / TA200_20_2 1.254.822 1.259.605 1.253.345 1.256.823
TA104 / TA200_20_3 1.226.654 1.228.027 1.223.157 1.224.065
TA105 / TA200_20_4 1.215.411 1.215.854 1.211.625 1.215.865
TA106 / TA200_20_5 1.219.698 1.218.757 1.213.883 1.218.650
TA107 / TA200_20_6 1.237.014 1.234.330 1.235.129 1.237.112
TA108 / TA200_20_7 1.233.257 1.240.105 1.232.346 1.235.926
TA109 / TA200_20_8 1.222.431 1.220.058 1.218.417 1.221.633
TA110 / TA200_20_9 1.234.864 1.235.113 1.235.641 1.241.081
TA111 / TA500_20_0 6.562.522 6.558.109 6.552.189 6.547.180
TA112 / TA500_20_1 6.678.713 6.679.339 6.675.497 6.662.028
TA113 / TA500_20_2 6.632.299 6.624.644 6.623.513 6.603.783
TA114 / TA500_20_3 6.633.622 6.646.006 6.636.420 6.616.575
TA115 / TA500_20_4 6.609.322 6.587.110 6.587.941 6.580.659
TA116 / TA500_20_5 6.605.982 6.602.685 6.595.286 6.591.712
TA117 / TA500_20_6 6.576.412 6.576.047 6.568.221 6.563.446
TA118 / TA500_20_7 6.628.915 6.629.065 6.617.381 6.616.946
TA119 / TA500_20_8 6.569.013 6.587.638 6.576.528 6.568.454
TA120 / TA500_20_9 6.614.629 6.623.849 6.624.923 6.598.425

Figure 17: Flowtime minimization full results: TAI81 to TAI120
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