
Eye-Tracking Assisted Search Engine
Pablo FOCKE

Université Grenoble Alpes
Grenoble, France

pablofocke@gmail.com

Supervised by: Francis JAMBON & Philippe MULHEM

I understand what plagiarism entails and I declare that this report
is my own, original work.
Pablo Focke, 26/04/2021

Abstract
This work focuses on the usage of eye-tracking
devices to improve query results of a search en-
gine. We extend an existing software platform
dedicated to such problem by integrating a new
eye-tracker, the Tobii 4C, and a new information
search system, Terrier v5. We then compared
the results of our experiments to previous work
[Vaynee Sungeelee2020] by repeating the same ex-
periments with our new upgraded machinery.

1 Introduction
Web information retrieval is present in our day to day life,
whenever we search for something on Google we are uncon-
sciously asking the browser to find all the documents related
to the few words we put on the query and to top it all of we ex-
pect to get the most relevant results on top. Google alone has
more than 130 trillion indexed pages and handles 3.8 million
searches per minute on average across the globe. Nonethe-
less, from the moment you press enter to the moment you get
your results usually no more than a second passes. This work
is done by the information retrieval system.

After an initial query asked by a user, classic Web search
engines usually return a list of results composed of extracts
(called snippets) of supposedly relevant documents. Usually
the user then chooses the document that seems most interest-
ing by clicking on the corresponding snippet, and then con-
sults the document. If the document is not relevant, the user
can return to the results page, and choose another document,
etc.

Eye-tracking can study how the user reads each snippet of
the results page, and determine if some words are more par-
ticularly watched by the user. It is thus possible to extend the
initial query of the user with these words, to send a new more
precise query, and thus to automatically improve the search
results without explicit intervention by the user.

Our work is based on an existing mockup that gave inter-
esting results [Vaynee Sungeelee2020]. Our main objective
is to improve this mockup with the new eye-tracking device

(Tobii 4C with Pro SDK). This device being more precise
and allowing the user slight movements of their head while
remaining accurate is better adapted for the job than the pre-
vious Eyetribe Eye tracker used.

In this paper we also upgraded the information retrieval
system from terrier v4.0 to terrier v5.4, the latter has an inte-
grated snippet generator that we will use to simulate a search
engine opposed to the previous version where we had to gen-
erate the snippets ourselves.

Contents

1 Introduction 1

2 Context 1
2.1 Information Retrieval 1
2.2 Eye Tracking 2
2.3 Eye Tracking Assisted Information Retrieval . 2

3 Previous Work 2
3.1 Software Architecture 2
3.2 Experiments end Results 4

4 Implementation 4
4.1 Tobii 4C Pro SDK Controller 4
4.2 Terrier v5 Connector 5

5 Experiments and Results 5
5.1 Experimental setup 5
5.2 Experiment 6
5.3 Results . 6

6 Conclusion 6

2 Context
2.1 Information Retrieval
In information retrieval, we have a large set of documents and
a system that is in charge of organising them by their content
and be able to retrieve them quickly when the user wants. A
query is a set of words given by the user as an input to this
engine it gives the engine clues of what the user is looking
for.

Search engines, based on classical information retrieval
systems, take a query (i.e. a list of keywords) as input and

use it to filter the set of indexed documents. Only relevant
documents to the query are taken into account and the list
of documents is ordered by decreasing relevance. However
a keyword can span over multiple topics (e.g. “earth” can
either refer to the “planet earth” or the “earth material”), so
some users might give ambiguous queries.

As a consequence, a large set of methods were developed
to improve the relevance of the documents returned. Among
these methods, ”query expansion” is a common technique
that consists in selecting and adding terms to the query to
improve the results of the search. Most of query expansions
methods rely on explicit actions from the user (e.g. document
selection). Although this technique could drastically improve
the results, asking directly for explicit feedback form the user
can be a burden to the user.

2.2 Eye Tracking
An eye tracking device, as its name suggests, tracks the eyes
of the user in order to get information such as the point in
the screen where he’s looking at, the size of his pupils, etc.
A lot of interesting information can be obtained from the de-
vice [Navalpakkam and Churchill2018, Holmqvist2017]. In
our work, we only focus on ”fixations” which correspond to
”pauses” within eyes movements, where the eyes keep look-
ing at a target for some time (opposed to saccades which are
short and fast movements between fixations). These fixations
represent signs of cognitive processing of information and are
noticeably useful for determining if a user is reading a spe-
cific word of a text on screen.

2.3 Eye Tracking Assisted Information Retrieval
Assuming that the eye tracker has a prior knowledge of the
positions of the words in the search engine result page, it is

able to analyze eye movements and so to determine which
words are read by the user (i.e. fixations). By keeping track
of the read words, methods to improve the query via query
expansion [Buscher et al.2009, Eickhoff et al.2015] could be
proposed. For example if the query is “earth” and the user is
looking at words such as “Jupiter” and “Mars”, adding any
of those therms to the query will most likely exclude all the
results non-related to planets. Obviously, the more accurate
the eye tracker is, the better the expansion will be.

3 Previous Work
Our work mostly rely on the [Vaynee Sungeelee2020] work.
I this section, we mainly present the architecture of the soft-
ware and the main experimental results. More detailed in-
formation and a deeper explanation of the goals of assisted
information retrieval can be found in the original paper.

3.1 Software Architecture
The software architecture of the proof of concept proposed
by [Vaynee Sungeelee2020] is presented in figure 1. This
architecture is globally preserved in our work, with changes
that do not play an important role on the bigger picture.

Eye Tracking system
The eye tracking system is composed of the eye tracker device
and a program used to retrieve its information, this system
will send information corresponding to the point the user is
looking at in screen for later analysis. This system also sends
display information such as screen width and height.

Eye Tracking Analysis
The points sent by the eye tracking system are then processed
and refined into fixations (when the user maintains eye con-
tact with a point for a certain time). This analyser also re-

Figure 1: Architecture of the application (by [Vaynee Sungeelee2020])
In green the changes made for this paper

ceives the position of each word displayed on screen by the
User interface, each word correspond to a rectangle zone on
screen containing the value of the word to identify it (e.g.
”the”, ”planet”, ”earth”). The figure 2 presents a visual ex-
ample of what zones and fixations look like. The zones cor-
responds to the yellow rectangles, the user gazes points are
represented by grey points, and the fixations are shown as
blue circles (the radius is proportional to how much the eye
moved around the area), the blue lines are just the movement
of the eye from one fixation to the other. Every time the user
fixates his gaze on a zone/word the analyser sends this infor-
mation to the Dialog Controller.

Figure 2: Eye tracking data visualization with Zones (yel-
low rectangles), Gaze Positions (grey points), and Fixa-
tions (blue circles)

Information Retrieval System
In a Web search engine, when you ask for a query, you wait
for a couple of seconds, then you get a list of results related
to the keywords you put in it. During that time, the search en-
gine filters documents from its database based on their com-
puted relevance to the query and presents them on a decreas-
ing order of relevance. This is done by the information re-
trieval system (IRS for short). Since this process is not the
main topic of our study, we opted to use Terrier V5.0, “an
open source search engine, readily deployable on large-scale
collections of document” [TerJune 2021].

In an Information Retrieval System (IRS), each document
is indexed to describe its content as a set of ”attributes” based
on their words. During the retrieval process, a query (com-
posed of words) issued by a user is first analysed according
to the same set of content attributes to describe its content.
Then, the query content is matched efficiently to the docu-
ments content in a way to compute their relevance value to
the query. Then the system displays the documents retrieved
in decreasing order of relevance. A deep exploration can be
found in these books: [Christopher D. Manning2008] (chap-
ters ”Boolean retrieval” & “Relevance feedback and query
expansion”) and [van Rijsbergen1979] (chapter 1). One key
problem is for the user to be able to express a query that re-
flects his ideas. For this project we’ll not go into details and
just scratch the surface of IR (see [Mulhem2021] for a sim-
pler explanation).

For the IRS to work, it needs to have a corpus of documents
from where to get the information. We fed Terrier with the

TIME collection [TimJune 2021] collection, which consists
of articles from the Time magazine.

Application interface
The information retrieval system can change very often, for
example if we want to retrieve the results from Google or
Bing, the structure is quite different (or even just by chang-
ing the version the structure can change). For this reason,
we need an intermediary program to get the raw data from
the IRS then filter it to only get the useful data in our format
(which consists of the title, URL, document Id and descrip-
tion). The application interface is hence in charge to commu-
nicate with the Information Retrieval system, it can ask for
the results of a query then process them to filter only the use-
ful information. It can then transmit this data to the Dialog
Controller. The application interface is also called ”Connec-
tor” since it serves as an intermediate for other programs to
ask for a query and get the results in a pre-established format.

User Interface
A user interacts with the system via the user interface (see
figure 3). It is displayed like a classical search engine result,
with the search bar on top and the results in form of snippets
with a title, an URL and a description text. The only main
difference being that there is a “refine” button on the right of
each snippet that the user can click at any point to refine the
search via query expansion. This interface is connected to
the Dialog controller to ask for queries and get their results,
it then transforms the text results into graphic snippets. By
doing so, it has knowledge of all the positions of each word,
then sends these Zones to the Eye Tracker Analyser. When-
ever these zones are updated (scrolling down, asking for new
query, change window size etc.), the User Interface will re
transmit them to the Eye Tracker Analyser.

Dialog Controller
The central piece of the program is the Dialog Controller. It is
the mediator between the User Interface and the Application
Interface. After a query is sent and treated, we retrieve the
results in form of snippet text. The dialog controller can then
proceed to communicate with the User Interface to update
it with the new results. The Dialog Controller also receives
all the important information from the Eye Tracker Analyser
such as the fixations in zones (words on screen), this will be
later used for the calculation of indicators.

Calculation of Indicators
Once a user decides to refine a query by clicking on the ”re-
fine” button on the User Interface, the program will look at
the words that the user looked at the most in the current snip-
pet (the snippet where the user clicked refine), and adds the
one with the highest score (based on the duration of the fixa-
tion, the last word looked at etc.). This added term should in
theory improve the results of the original search.

Usybus Communication
In this project we call the communication handler ”Usybus”
(Usability data Bus). We use Ivy software bus for commu-
nication: ”Ivy is a simple protocol and a set of open-source
libraries and programs that allows applications to broadcast

Figure 3: User interface

information through text messages, with a subscription mech-
anism based on regular expressions” [IvyJune 2021]. It is
available in multiple libraries such as C++, Java and Python
which is the reason why it was chosen, to provide the tools
needed to communicate between the different languages used
in this project (Python and Java mainly). The main idea of
Usybus is to make an oversimplified communication system
using high level functions (connect, disconnect, sendMsg,
bindType, etc.) that take care of the low level Ivy formal-
ities. It allows our various modules to be written in different
languages as long as they use Usybus to communicate.

3.2 Experiments end Results
For the [Vaynee Sungeelee2020] experiment, the Eye Tribe
ET1000 [TheJune 2021] eye tracker was used, its sampling
frequency was 30 Hz with an average accuracy between 0.5
to 1 ◦ of visual angle. The eye tracker was placed on the
bottom of the display (similar to figure 5 but with a different
eye tracker) and the users were asked to maintain a distance
of about 60 cm away from the screen for better gaze detec-
tion. Nine participants conducted the experiment; each of
them was asked to choose 2 queries out of 3 options, and for
each query, search for the snippet they consider the most rel-
evant then click on its refine button (just like one would click
on a result in a web search). Among all the results only 7 of
them were retained due to calibration issues.

The results obtained in [Vaynee Sungeelee2020] are de-
tailed in Table 2. The scores of each query before expan-
sion are given for P@5, P@10 and Reciprocal Rank followed
by their corresponding scores after expansion with the cor-
responding word (go to 5.3 to see how they’re calculated).

A (+) sign next to a score means that the expansion has im-
proved its score, whereas a (-) indicates the opposite. A (=)
means that the score hasn’t changed. The last column tells us
if at least one score has improved after expansion.

Looking the results of table2 we can see that 4 out of 7
queries improved after expansion. However not all queries
seem to be affected unanimously, the first and third queries
have only positive results while the second one only negative.
This hints us that not all queries can benefit as much of the
query expansion.

4 Implementation
It is important to mention that the eye tracker system used in
[Vaynee Sungeelee2020] is now outdated as newer and better
eye tracking devices are now available in the market. In the
previous work they used ”Eye Tribe ET1000” eye tracking
device and the new device used for this study is the ”Tobii 4C
with Pro SDK”.

The other main difference is the older version of Terrier
v4.0 that is now outdated by v5.4. The old snippet generator
used in the previous study was ”homemade” . It can be re-
placed by Terrier v5 embedded snippet generator, easing the
reproducibility of our experiences, and so allowing compari-
son with the literature.

These changes are visualised in green in the architecture
(see figure1).

4.1 Tobii 4C Pro SDK Controller
The new Tobii 4C eye tracker has a completely different im-
plementation from the previous device. As the Tobii Pro SDK
(software development kit) is not available in Java (the main

language used for this PoC), we had then to use the Python
SDK instead. The Python code uses a Tobii module in order
to retrieve gaze information from the device.

Python Usybus Implementation
Usybus needs to be implemented in all the programming lan-
guages used in order for them to communicate. A Java code
for Usybus was already implemented, however the Python
implementation was missing. Usybus for Python was then
implemented in order for the Controller to communicate with
the rest of the Java code. With this we were able to commu-
nicate the Eye Tracker gaze data via Usybus.

User Interface
The next step was to create a user interface in order to make
communication and transmission of messages easier (as well
as connection, disconection, calibration, etc.). To generate
the user interface, we used the QtDesigner program as ”Qt
Designer is the Qt tool for designing and building graphi-
cal user interfaces (GUIs) with Qt Widgets” [QtDJune 2021].
With this program, we can create intuitively ”.ui” files, then
we can use the PyQt5 module for Python to generate the GUI
with code and associate each button to an action. The final
result can be seen in figure 4

Figure 4: Tobii 4C controller user interface

As can be seen from the image this user interface allows
to connect and disconnect a selected eye tracker and also se-
lect the screen to which it is attached to (in case of multiple
displays). This can be done in the eye tracker control box.

Once the eye tracker is connected we can get useful data
such as the connection status, the sample rate, the calibration
status, and the screen resolution of the screen.

In the eye gaze monitoring box, we can get the displayed
info sent by the eye tracker. By checking the ”Monitor data
from eye-tracker” case, we can get real time information
about the gaze data : timestamp, gaze positions, pupils di-
ameters and data validity flags.

And finally the Usybus control box is the one in charge to
communicate the checked info via Usybus (here it will only

send ”Point” information), it transmits the data with the same
frequency as the eye tracker when the button start is pressed,
and stops sending data once the stop button is clicked.

4.2 Terrier v5 Connector
In the previous work [Vaynee Sungeelee2020], Terrier v4.0
was used for the search engine. However this needed to be
upgraded to Terrier v5.4 newer version. A new code was im-
plemented in order to transform the results given by Terrier v5
to the pre-established Search Engine Research Page structure
(title, document Id, URL and description).

Terrier v5 can be used on a web tab just like a normal
search engine browser, our code then extracts the useful in-
formation from the web source code to retrieve the results
of the query. Since the Terrier tab source code is in HTTP
language this connector is technically an HTTP source code
parser.

5 Experiments and Results
For this new experiment, we tried to be as close as possible to
the previous proof of concept [Vaynee Sungeelee2020] with
the only changes being the new eye Tracker device and the
new information retrieval system.

5.1 Experimental setup
Before each user experiment, the eye tracker first needs to
be calibrated via its driver and a direct interaction with the
user (this is to take into account the distance to the screen,
local illumination etc.), then it is ready to use. Similar to
[Vaynee Sungeelee2020], the setup occurred in front of a
screen with the Eye Tracker attached in the bottom (figure 5).

Figure 5: Experimental setup

The Tobii 4C eye tracker gives us information about the
validity (e.g. closed or open eye), the point on screen we’re
looking at and the pupil size for each eye. Given the slightly
different information structure given by the new eye tracker
compared to the previous one, we only consider the user is
looking at a point in screen when both eyes are valid and the
”look point” is set to the average of both eyes.

As explained before, the eye tracker used is the Tobii 4C.
It has a sampling frequency of 90 Hz, the participants were

about 60 cm away from the screen for optimal detection, two
of them wearing glasses (this is important to mention since
it’s a common problem that eye trackers have a hard time
dealing with glasses) and it was done in a closed room il-
luminated only with artificial light (for better detection).

5.2 Experiment
It is important to mention that due to the global pandemic
only three users did the experiment (including myself), and
these three people were part of the project so they are biased
as they already know the goal of this experiment and how it
works.

The experiment was the following; the participant were
asked to search three given queries, for each of them, they
look at the results until they find one they consider relevant
then click on the refine button on the snippet they liked the
most. Query expansion is then applied and we can now see
how much the query improved dompared to the initial result.

5.3 Results
We present here preliminary experiments conducted on three
participants. They were asked to search for three queries,
and their gaze was analysed to perform query expansion
as described before. The results are present in table 1. In
this table, we study three classical Information Retrieval
Evaluation measures (P@5, P@10 and reciprocal rank), that
respectively reflect the quality of the top-5, top-10 and the
position of the first relevant document in the result list.

P@k = number of relevant documents among the first k
k

reciprocal rank = 1
rank of first relevant document

From table 1, we see that none of our experiment was able
to outperform the initial (non expanded) queries, on any of
the three evaluation measures considered. These results are
then worse than the ones reported in [Vaynee Sungeelee2020]
presented in table 2.

We propose some hypotheses to explain these poor results.
First, the eye tracker may send low quality data, but this hy-
pothesis is not credible since the device specifications are sig-
nificantly better than the previous one. Second, the Terrier v5
snippet generator might be worse than the ”homemade” snip-
pet generator. This hypothesis is credible and need further
investigation. Our experiments do not help us to give an an-
swer to this question yet. Third, another explanation is that
the very low number of participants (only 3), and the fact that
2 of them had glasses may alter the efficiency of the words
identifications.

Another point worth mentioning is that, as presented
in table 2, we do not always obtain similar evaluations
than [Vaynee Sungeelee2020] for non-expended queries
(scores are different in the ”∅” row): what changes between
the two experiments is the version of the Terrier system, v5.4
in our experiments, and V4.0 in [Vaynee Sungeelee2020].
Further tests have to be achieved to find out the reasons for
these differences.

6 Conclusion
In conclusion, the goal of the work described here was to:

• Acquire knowledge on the research topics of Informa-
tion Retrieval and of Eye Tracking;

• Build a Terrier v5 Connector for the current architecture,
which helped the main code to communicate with the
new version of Terrier;

• Develop an Usybus module for general communication
purposes between any Python program and the rest of
the project ;

• Develop a graphic user interface in order to easily and
quickly connect a Tobii Pro SDK eye tracker to the rest
of the system and retrieve the selected data;

• Run a first experiment using the tools developed.

All these steps have been completed, and even if the pre-
liminary experiments are given bad results (worst than previ-
ous work), we are confident about the fact that further tunings
will outperform existing results.

So, a goal for short term would be to do more experiments
in order to have more results and data to analyse, this would
be the most logical next step. As for longer therm another in-
teresting idea would be to explore other search engines such
as Google, Qwant, Bing, etc., but with such search engines
additional efforts will be needed to tackle the problem of
manual assessment of relevant documents.

References
[Buscher et al., 2009] Georg Buscher, Ludger Van Elst, and

Andreas Dengel. Segment-level display time as implicit
feedback: a comparison to eye tracking. In Proceedings
of the 32nd international ACM SIGIR conference on Re-
search and development in information retrieval, pages
67–74. ACM, 2009.

[Christopher D. Manning, 2008] Prabhakar Raghavan Hin-
rich Schütze Christopher D. Manning. Introduction to In-
formation Retrieval. 2008.

[Eickhoff et al., 2015] Carsten Eickhoff, Sebastian Dungs,
and Vu Tran. An eye-tracking study of query reformula-
tion. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pages 13–22. ACM, 2015.

[Holmqvist, 2017] Kenneth Holmqvist. Eye tracking: A
comprehensive guide to methods, paradigms, and mea-
sures. Lund Eye-Tracking Research Institute, December
2017.

[Ivy, June 2021] Ivy. https://www.eei.cena.fr/
products/ivy/, June 2021.

[Mulhem, 2021] Philippe Mulhem. Recherche
d’information, fondements. https://rimiashs.
imag.fr/lib/exe/fetch.php?media=
fondements_ri_2020-2021.pdf, 2021.

[Navalpakkam and Churchill, 2018] Vidhya Navalpakkam
and Elizabeth F. Churchill. Et-slides, 2018.

https://www.eei.cena.fr/products/ivy/
https://www.eei.cena.fr/products/ivy/
https://rimiashs.imag.fr/lib/exe/fetch.php?media=fondements_ri_2020-2021.pdf
https://rimiashs.imag.fr/lib/exe/fetch.php?media=fondements_ri_2020-2021.pdf
https://rimiashs.imag.fr/lib/exe/fetch.php?media=fondements_ri_2020-2021.pdf

[QtD, June 2021] Qtdesigner. https://doc.qt.io/
qt-5/qtdesigner-manual.html, June 2021.

[Ter, June 2021] Terrier v5. http://terrier.org/,
June 2021.

[The, June 2021] Eyetribe. http://theeyetribe.
com, June 2021.

[Tim, June 2021] Time collection. http://ir.dcs.
gla.ac.uk/resources/test_collections/
time/, June 2021.

[van Rijsbergen, 1979] Keith van Rijsbergen. Information
Retrieval. 1979.

[Vaynee Sungeelee, 2020] Philippe Mulhem
Vaynee Sungeelee, Francis Jambon. Proof of con-
cept and evaluation of eye gaze enhanced relevance
feedback in ecological context. October 2020.

Query Term added P@5 P@10 Recip Rank Overall Improvement

Baath party
∅ 0.0000 0.0000 0.0164 -

lugubrious 0.0000 (=) 0.0000 (=) 0.0164 (=) No
rethorical 0.0000 (=) 0.0000 (=) 0.0164 (=) No

over 0.0000 (=) 0.0000 (=) 0.0164 (=) No

U.S. policy toward
South Viet Nam

∅ 0.0000 0.0000 0.0159 -
optimism 0.0000 (=) 0.0000 (=) 0.0152 (-) No

saigon 0.0000 (=) 0.0000 (=) 0.0154 (-) No
concrete 0.0000 (=) 0.0000 (=) 0.0137 (-) No

Ceremonial suicides
of buddhists monks

∅ 0.2000 0.1000 0.333 -
protest (PM) 0.0000 (-) 0.1000 (=) 0.1667 (-) No

macabre 0.2000 (=) 0.1000 (=) 0.333 (=) No

Table 1: Results with Precision@5 and Precision@10 scores, reciprocal rank before/after refinements for our work.

Query Term added P@5 P@10 Recip Rank Overall Improvement

Baath party
∅ 0.0000 0.0000 0.0164 -

settle 0.0000 (=) 0.0000 (=) 0.0244 (+) Yes
self-isolation 0.0000 (=) 0.0000 (=) 0.0227 (+) Yes

U.S. policy toward
South Viet Nam

∅ 0.0000 0.1000 0.1429 -
conference 0.0000 (=) 0.1000 (=) 0.1000 (-) No

Military 0.0000 (=) 0.0000 (-) 0.0714 (-) No
misinformed 0.0000 (=) 0.1000 (=) 0.1429 (=) No

Ceremonial suicides
of buddhists monks

∅ 0.0000 0.0000 0.0227 -
automobile 0.2000 (+) 0.1000 (+) 0.3333 (+) Yes

school 0.2000 (+) 0.1000 (+) 0.2000 (+) Yes

Table 2: Results with Precision@5 and Precision@10 scores, reciprocal rank before/after refinements from
[Vaynee Sungeelee2020]

https://doc.qt.io/qt-5/qtdesigner-manual.html
https://doc.qt.io/qt-5/qtdesigner-manual.html
http://terrier.org/
http://theeyetribe.com
http://theeyetribe.com
http://ir.dcs.gla.ac.uk/resources/test_collections/time/
http://ir.dcs.gla.ac.uk/resources/test_collections/time/
http://ir.dcs.gla.ac.uk/resources/test_collections/time/

	Introduction
	Context
	Information Retrieval
	Eye Tracking
	Eye Tracking Assisted Information Retrieval

	Previous Work
	Software Architecture
	Experiments end Results

	Implementation
	Tobii 4C Pro SDK Controller
	Terrier v5 Connector

	Experiments and Results
	Experimental setup
	Experiment
	Results

	Conclusion

